Premium
Preparation of phospholipid oil‐in‐water microspheres by microchannel emulsification technique
Author(s) -
Tong Jihong,
Nakajima Mitsutoshi,
Nabetani Hiroshi
Publication year - 2002
Publication title -
european journal of lipid science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.614
H-Index - 94
eISSN - 1438-9312
pISSN - 1438-7697
DOI - 10.1002/1438-9312(200204)104:4<216::aid-ejlt216>3.0.co;2-h
Subject(s) - dispersity , lecithin , chromatography , chemical engineering , pulmonary surfactant , chemistry , oil droplet , phase (matter) , coalescence (physics) , microchannel , materials science , emulsion , organic chemistry , nanotechnology , biochemistry , physics , astrobiology , engineering
A novel microchannel (MC) emulsification technique for producing super‐monodisperse microspheres (MS) was recently proposed. In this study, we investigated the formation of monodisperse oil‐in‐water (O/W)‐MS using lecithin and lysophosphatidylcholine (LPC) as surfactant by applying the MC emulsification technique. When we used lecithin to produce O/W‐MS, we observed coalescence of the formed MS and the continuous outflow of the oil phase through the MC. This was probably due to the insufficient interfacial activity of lecithin and the subsequent wetting of the MC surface by the oil phase during the emulsification process. The monodisperse O/W‐MS could not be produced when lecithin was used as the only surfactant. However, we successfully produced monodisperse O/W‐MS by using hydrophilic LPC dissolved in the water phase. Also, a more stable emulsification process producing monodisperse O/W‐MS was found using lecithin in the oil phase and LPC in the water phase. The monodisperse O/W‐MS production was improved by a special surface oxidation treatment of the MC plate.