Premium
Selectivity of lipases: isolation of fatty acids from castor, coriander, and meadowfoam oils
Author(s) -
Foglia Thomas A.,
Jones Kerby C.,
Sonnet Philip E.
Publication year - 2000
Publication title -
european journal of lipid science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.614
H-Index - 94
eISSN - 1438-9312
pISSN - 1438-7697
DOI - 10.1002/1438-9312(200010)102:10<612::aid-ejlt612>3.0.co;2-u
Subject(s) - ricinoleic acid , lipase , castor oil , chemistry , organic chemistry , hydrolysis , fatty acid , candida rugosa , geotrichum , triacylglycerol lipase , chromatography , food science , enzyme
The lipase‐catalyzed hydrolysis of castor, coriander, and meadowfoam oils was studied in a two‐phase water/oil system. The lipases from Candida rugosa and Pseudomonas cepacia released all fatty acids from the triglycerides randomly, with the exception of castor oil. In the latter case, the P. cepacia lipase discriminated against ricinoleic acid. The lipase from Geotrichum candidum discriminated against unsaturated acids having the double bond located at the Δ‐6 (petroselinic acid in coriander oil) and Δ‐5 (meadowfoam oil) position or with a hydroxy substituent (ricinoleic acid). The expression of the selectivities of the G. candidum lipase was most pronounced in lipase‐catalyzed esterification reactions, which was exploited as part of a two‐step process to prepare highly concentrated fractions of the acids. In the first step the oils were hydrolyzed to their respective free fatty acids, in the second step a selective lipase was used to catalyze esterification of the acids with 1‐butanol. This resulted in an enrichment of the targeted acids to approximately 95—98% in the unesterified acid fractions compared to the 70—90% content in the starting acid fractions.