Premium
Facilitation and competition interact with seed dormancy to affect population dynamics in annual plants
Author(s) -
Leverett Lindsay D.,
Shaw Allison K.
Publication year - 2019
Publication title -
population ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.819
H-Index - 59
eISSN - 1438-390X
pISSN - 1438-3896
DOI - 10.1002/1438-390x.12021
Subject(s) - facilitation , biology , population , dormancy , competition (biology) , ecology , population size , allee effect , extinction (optical mineralogy) , demography , germination , botany , neuroscience , paleontology , sociology
Abstract Seed dormancy increases population size via bet‐hedging and by limiting negative interactions (e.g., competition) among individuals. On the other hand, individuals also interact positively (e.g., facilitation), and in some systems, facilitation among juveniles precedes competition among adults in the same generation. Nevertheless, studies of the benefits of seed dormancy typically ignore facilitation. Using a population growth model, we ask how the facilitation–competition balance interacts with seed dormancy rate to affect population dynamics in constant and variable environments. Facilitation increases the growth rate and equilibrium size (in both constant and variable environments) and reduces the extinction rate of populations (in a variable environment), and a higher rate of seed dormancy allows populations with facilitation to reach larger sizes. However, the combined benefits of facilitation and a high dormancy rate only occur in large populations. In small populations, weak facilitation does not affect the growth rate, but does induce a weak demographic Allee effect (where population growth decreases with decreasing population size). Our results suggest that facilitation within populations can interact with bet‐hedging traits (such as dormancy) or other traits that mediate density to affect population dynamics. Further, by ensuring survival but limiting reproduction, ontogenetic switches from facilitation to competition may enable populations to persist but limit their maximum size in variable environments. Such intrinsic regulation of populations could then contribute to the maintenance of similar species within communities.