z-logo
Premium
Bounding the growth factor in Gaussian elimination for Buckley's class of complex symmetric matrices
Author(s) -
Ikramov Khakim D.,
Kucherov Andrey B.
Publication year - 2000
Publication title -
numerical linear algebra with applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.02
H-Index - 53
eISSN - 1099-1506
pISSN - 1070-5325
DOI - 10.1002/1099-1506(200007/08)7:5<269::aid-nla197>3.0.co;2-8
Subject(s) - gaussian elimination , bounding overwatch , mathematics , combinatorics , class (philosophy) , gaussian , matrix (chemical analysis) , symmetric matrix , factor (programming language) , complex matrix , pure mathematics , physics , computer science , chemistry , quantum mechanics , artificial intelligence , programming language , eigenvalues and eigenvectors , chromatography
A Buckley matrix is an n  ×  n complex symmetric matrix A  =  I n  + i C , where C is real symmetric positive definite. We prove that, for such A the growth factor in Gaussian elimination is not greater than$${1 + \sqrt{17} \over 4} \simeq 1.28078\ldots$$Copyright © 2000 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here