Premium
Linearized quantum and relativistic Fokker–Planck–Landau equations
Author(s) -
Lemou M.
Publication year - 2000
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/1099-1476(200008)23:12<1093::aid-mma153>3.0.co;2-8
Subject(s) - fokker–planck equation , mathematics , landau quantization , operator (biology) , eigenvalues and eigenvectors , boltzmann constant , mathematical physics , mathematical analysis , physics , quantum mechanics , partial differential equation , magnetic field , transcription factor , gene , biochemistry , chemistry , repressor
After a recent work on spectral properties and dispersion relations of the linearized classical Fokker–Planck–Landau operator [8], we establish in this paper analogous results for two more realistic collision operators: The first one is the Fokker–Planck–Landau collision operator obtained by relativistic calculations of binary interactions, and the second is a collision operator (of Fokker–Planck–Landau type) derived from the Boltzmann operator in which quantum effects have been taken into account. We apply Sobolev–Poincaré inequalities to establish the spectral gap of the linearized operators. Furthermore, the present study permits the precise knowledge of the behaviour of these linear Fokker–Planck–Landau operators including the transport part. Relations between the eigenvalues of these operators and the Fourier‐space variable in a neighbourhood of 0 are then investigated. This study is a first natural step when one looks for solutions near equilibrium and their hydrodynamic limit for the full non‐linear problem in all space in the spirit of several works [3, 6, 20, 2] on the non‐linear Boltzmann equation. Copyright © 2000 John Wiley & Sons, Ltd.