Premium
Putative role of presynaptic α7* nicotinic receptors in nicotine stimulated increases of extracellular levels of glutamate and aspartate in the ventral tegmental area
Author(s) -
Schilström B.,
Fagerquist M.V.,
Zhang X.,
Hertel P.,
Panagis G.,
Nomikos G.G.,
Svensson T.H.
Publication year - 2000
Publication title -
synapse
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.809
H-Index - 106
eISSN - 1098-2396
pISSN - 0887-4476
DOI - 10.1002/1098-2396(20001215)38:4<375::aid-syn2>3.0.co;2-y
Subject(s) - ventral tegmental area , nucleus accumbens , nicotine , methyllycaconitine , chemistry , nicotinic agonist , dopamine , ibotenic acid , glutamate receptor , neuroscience , pharmacology , dopaminergic , nicotinic acetylcholine receptor , receptor , biology , biochemistry , central nervous system
We have previously provided evidence that the stimulatory action of systemic nicotine on dopamine release in the rat nucleus accumbens is initiated in the ventral tegmental area (VTA), and that it appears to be mediated partly through an indirect, presynaptic mechanism. Thus, it was found that blockade of N‐methyl‐D‐aspartate (NMDA) receptors in the VTA attenuates the enhancing effect of nicotine on extracellular levels of dopamine in the nucleus accumbens. Moreover, the nicotine‐induced dopamine output in the nucleus accumbens was found to be blocked by pretreatment with methyllycaconitine (MLA) in the VTA, indicating a role for α7* nicotinic acetylcholine receptors (nAChRs) in this mechanism. Thus, nicotine may exert its effects in the VTA through stimulation of α7* nAChRs localized on excitatory amino acid (EAA)ergic afferents. To test this hypothesis, we here measured extracellular concentrations of glutamate and aspartate in the VTA in response to systemic nicotine, with or without concurrent infusion of MLA in the VTA, using microdialysis in anaesthetized rats. Since the medial prefrontal cortex is an important source of EAA input to the VTA, we also assessed the density of α‐bungarotoxin binding sites in the VTA in rats lesioned bilaterally in the prefrontal cortex with ibotenic acid and in sham‐lesioned rats by means of quantitative autoradiography. Nicotine (0.5 mg/kg, s.c.) significantly increased extracellular levels of both aspartate and glutamate in the VTA. MLA (0.3 mM) infused locally in the VTA prevented the nicotine‐induced increase in glutamate and aspartate levels. Ibotenic acid lesions of the prefrontal cortex decreased the density of α‐bungarotoxin binding sites in the VTA by about 30%. These data indicate that nicotine increases the extracellular levels of excitatory amino acids in the VTA through stimulation of nAChRs in the VTA and that part of the α7* nAChR population in the VTA is localized on neurons originating in the prefrontal cortex. Synapse 38:375–383, 2000. © 2000 Wiley‐Liss, Inc.