Premium
X‐ray photoelectron spectroscopy and electrical conductivity of polyaniline doped with dodecylbenzenesulfonic acid as a function of the synthetic method
Author(s) -
Barra Guilherme M. O.,
Leyva Maria Elena,
Gorelova Marianna M.,
Soares Bluma G.,
Sens Marcio
Publication year - 2001
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/1097-4628(20010425)80:4<556::aid-app1130>3.0.co;2-n
Subject(s) - polyaniline , protonation , aniline , x ray photoelectron spectroscopy , polymerization , polymer chemistry , conductive polymer , sulfonic acid , polyaniline nanofibers , chemistry , conductivity , materials science , polymer , organic chemistry , chemical engineering , ion , engineering
X‐ray photoelectron spectroscopy (XPS) has been employed to investigate the protonation degree of polyaniline doped with dodecylbenzenesulfonic acid (Pani. DBSA) obtained by different synthetic methods. The protonation degree has been compared to electrical conductivity. Pani.DBSA prepared through the redoping process in an agate mortar displays conductivity values within the range of 1 S/cm. A protonation level of 48% with almost all imine groups being protonated. Pani.DBSA was also synthesized by oxidative polymerization of aniline in the presence of DBSA, which acts simultaneously as a surfactant and as protonating agent. This in situ doping polymerization was carried out in aqueous or toluene media. In both cases, protonation degrees higher than 50% have been achieved, indicating that a substantial portion of amine units have also been protonated. Higher doping degree has been achieved by aqueous dispersion polymerization of aniline. The C/N and S/N molar ratios obtained by XPS analysis indicate that the polyaniline chains obtained by in situ polymerization are protonated by both sulfonate and hydrogen sulfate anions. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 556–565, 2001