Premium
Synthesis and properties of a novel (main‐chain)– (side‐chain) polymeric peroxide
Author(s) -
Nanda A. K.,
Jayaseharan J.,
Kishore K.
Publication year - 2000
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/1097-4628(20010228)79:9<1549::aid-app20>3.0.co;2-g
Subject(s) - peroxide , polymer chemistry , copolymer , polymerization , side chain , kinetics , fourier transform infrared spectroscopy , chain (unit) , activation energy , materials science , chain propagation , chemistry , chemical engineering , polymer , organic chemistry , physics , quantum mechanics , astronomy , engineering
A novel (main‐chain)‐(side‐chain) vinyl polyperoxide, poly(dipentene peroxide) (PDP), an alternating copolymer of dipentene (DP) and oxygen, has been synthesized by thermal oxidative polymerization of DP. The PDP was characterized by 1 H NMR, 13 C NMR, FTIR, DSC, TGA, and EI‐MS studies. The overall activation energies of the degradation from Kissinger's method were 28 and 33 kcal/mol, respectively, for the endocyclic and acyclic peroxide units. The side‐chain peroxy groups were found to be thermally more stable than the main chain. Above 45°C the rate of polymerization increases sharply at a particular instant showing an “autoacceleration” with the formation of knee point. The kinetics of autoacceleration has been studied at various temperatures (45–70°C) and pressures (50–250 psi). © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1549–1555, 2001