Premium
Microgelation of unsaturated polyester resins in the presence of poly(vinyl acetate) by static and dynamic light scattering
Author(s) -
Sun M. C.,
Chang Y. F.,
Yu T. Leon
Publication year - 2000
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/1097-4628(20010222)79:8<1439::aid-app110>3.0.co;2-9
Subject(s) - vinyl acetate , polyester , materials science , polymer chemistry , dynamic light scattering , composite material , unsaturated polyester , polymer , copolymer , nanotechnology , nanoparticle
The partially cured unsaturated polyester (UPE)/styrene resins with various degrees of conversion lower than gel conversion blended with PVAc and 2‐fluorotoluene solvent were investigated using both static and dynamic light scattering (SLS and DLS). The solvent (i.e., 2‐fluorotoluene) is isorefractive with PVAc; thus, one sees only primary and partially cured UPEs in light‐scattering experiments. DLS was used to follow the variations of primary UPE and UPE microgel particle sizes, and SLS was used to follow the variations of UPE molecular weight, second virial coefficient ( A 2 ), anisosymmetry (ρ v ), and differential index refraction ( dn / dC ) with degree of UPE conversion and PVAc concentration. The experimental data showed that, at a fixed degree of UPE/styrene conversion, increasing PVAc concentration in the UPE/styrene system caused decreases in dn / dC , A 2 , ρ v , and particle sizes of UPE microgels. These results suggest that mixing PVAc into UPE/styrene resins causes an increase in the compactness of UPE coils and favors intramolecular UPE/styrene cyclization in the early stage of curing. Thus A 2 , ρ v , and particle sizes of microgels decreased with increasing PVAc concentration. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1439–1449, 2001