z-logo
Premium
Breathable polymer films produced by the microlayer coextrusion process
Author(s) -
Mueller Chad,
Topolkaraev Vasily,
Soerens Dave,
Hiltner Anne,
Baer Eric
Publication year - 2000
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/1097-4628(20001024)78:4<816::aid-app150>3.0.co;2-d
Subject(s) - polyolefin , materials science , polypropylene , polyethylene , composite material , polymer , water vapor , chemical engineering , polymer chemistry , layer (electronics) , chemistry , organic chemistry , engineering
Fabrication of a breathable film by the microlayer coextrusion process is described. Poly(ethylene oxide) (PEO) was microlayered with a filled polyolefin, either CaCO 3 ‐filled polyethylene or CaCO 3 ‐filled polypropylene. The thickness of individual layers was varied by increasing the total number of layers in the microlayered film from 8 to 4096. The water vapor transport rate (WVTR) was measured for microlayer films that varied in composition and number of layers. Especially with the PP(CaCO 3 )/PEO system, systematic variation in composition and number of layers made it possible to obtain large changes in the WVTR. The results were related to the tortuousity of the pathway through the microlayer. The filled polyolefins acted as a barrier to water vapor transport through the hydrophilic PEO. As the individual layers were made thinner by increasing the total number of layers, the polyolefin layers changed from continuous to discontinuous. Tortuousity concepts were used to correlate the increase in WVTR with an effective aspect ratio of the discontinuous polyolefin layers. In addition to high WVTR values, the breathable films produced by microlayering PEO with a filled polyolefin exhibited excellent mechanical properties. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 816–828, 2000

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here