z-logo
Premium
Effect of nanometer SiC filler on the tribological behavior of PEEK under distilled water lubrication
Author(s) -
Wang QiHua,
Xue QunJi,
Liu WeiMin,
Chen JianMin
Publication year - 2000
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/1097-4628(20001017)78:3<609::aid-app160>3.0.co;2-d
Subject(s) - peek , materials science , composite material , tribology , lubrication , scanning electron microscope , nanometre , distilled water , composite number , polymer , chemistry , chromatography
The composites of polyetheretherketone (PEEK) filled with nanometer SiC of different proportions were prepared by compression molding. The tribological behaviors of the composites under lubrication of distilled water were investigated and compared with that under dry sliding, on an M‐200 friction and wear test rig, by running a plain carbon steel (AISI 1045 steel) ring against the composite block. The worn surfaces of nanometer SiC filled‐PEEK and the transfer film were observed by means of scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). As the results, nanometer SiC as the filler greatly improves the wear resistance of PEEK under dry sliding and distilled water lubrication, though the composites show different dependence of wear resistance on the filler content. Nanometer SiC‐filled PEEK showed signs of slight scuffing under distilled water lubrication, while a thin, uniform, and tenacious transfer film was formed on the surface of the counterpart steel ring. On the contrary, unfilled PEEK under lubrication of water showed signs of severe plowing and erosion, while the worn surface of the counterpart ring was very rough, and a discontinuous PEEK transfer film was formed. Thus, the different friction and wear behaviors of unfilled PEEK and nanometer SiC‐filled PEEK can be attributed to the different characteristics of the corresponding transfer films. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 609–614, 2000

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here