z-logo
Premium
Effect of electron beam irradiation on mechanical properties of high density polyethylene and its blends with sericite‐tridymite‐cristobalite
Author(s) -
Xu Wen,
Liu Pengbo,
Li Hongbo,
Xu Xi
Publication year - 2000
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/1097-4628(20001010)78:2<243::aid-app20>3.0.co;2-r
Subject(s) - high density polyethylene , materials science , ultimate tensile strength , tridymite , composite material , polyethylene , irradiation , cristobalite , polymer chemistry , quartz , physics , nuclear physics
Some oxygen containing groups (mainly the CO group) are formed on the molecular chain of high density polyethylene (HDPE) during electron beam irradiation in air. The affinity between HDPE and sericite‐tridymite‐cristobalite (STC), the dispersion of STC in the HDPE matrix, and the mechanical properties of the HDPE/STC blend are improved quite a lot by the introduction of polar groups. Compared with HDPE, the tensile and impact strength of electron beam irradiated HDPE (30 kGy)/STC (60/40) are increased to 29.0 MPa and 518 J/m, respectively, from 24.5 MPa and 215 J/m; the tensile and impact strength of irradiated HDPE (30 kGy)/STC (50/50) are 31.1 MPa and 424 J/m, respectively. The Ceast impact test showed that the increase of impact strength was mainly due to the strong interfacial adhesion between irradiated HDPE and STC, thus preventing the spreading of cracks over wide areas. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 243–249, 2000

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here