Premium
Fine structure and physical properties of polyethylene/poly(ethylene terephthalate) bicomponent fibers in high‐speed spinning. I. Polyethylene sheath/poly(ethylene terephthalate) core fibers
Author(s) -
Cho H. H.,
Kim K. H.,
Kang Y. A.,
Ito H.,
Kikutani T.
Publication year - 2000
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/1097-4628(20000906)77:10<2254::aid-app19>3.0.co;2-m
Subject(s) - materials science , linear low density polyethylene , composite material , polyethylene terephthalate , high density polyethylene , fiber , polyethylene , melt spinning , crystallization , synthetic fiber , spinning , ultimate tensile strength , core (optical fiber) , thermal stability , melt flow index , polymer chemistry , polymer , chemical engineering , copolymer , engineering
The high‐speed melt spinning of sheath/core type bicomponent fibers was performed and the change of fiber structure with increasing take‐up velocity was investigated. Two kinds of polyethylene, high density and linear low density (HDPE, LLDPE) with melt flow rates (MFR) of 11 and 50, [HDPE(11), LLDPE(50)], and poly(ethylene terephthalate) (PET) were selected and two sets of sheath/core combinations [HDPE(11)/PET and LLDPE(50)/PET bicomponent fibers] were studied. The fiber structure formation and physical property effects on the take‐up velocities were investigated with birefringence, wide‐angle X‐ray diffraction, thermal analysis, tensile tests, and so forth. In the fiber structure formation of PE/PET, the PET component was developed but the PE components were suppressed in high‐speed spinning. The different kinds of PE had little affect on the fine structure formation of bicomponent fibers. The difference in the mechanical properties of the bicomponent fiber with the MFR was very small. The instability of the interface was shown above a take‐up velocity of 4 km/min, where the orientation‐induced crystallization of PET started. LLDPE(50)/PET has a larger difference in intrinsic viscosity and a higher stability of the interface compared to the HDPE(11)/PET bicomponent fibers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2254–2266, 2000