z-logo
Premium
A modeling and experimental study of the influence of twist on the mechanical properties of high‐performance fiber yarns
Author(s) -
Rao Yuanqiao,
Farris Richard J.
Publication year - 2000
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/1097-4628(20000829)77:9<1938::aid-app9>3.0.co;2-d
Subject(s) - materials science , kevlar , composite material , ultimate tensile strength , twist , fiber , modulus , yarn , stiffness , synthetic fiber , shear modulus , elongation , young's modulus , composite number , mathematics , geometry
Little data exist on how twist changes the properties of high‐performance continuous fiber yarns. For this reason, a study was conducted to determine the influence of twist on the strength and stiffness of a variety of high‐performance continuous polymeric fiber yarns. The materials investigated include Kevlar 29®, Kevlar 49®, Kevlar 149®, Vectran HS®, Spectra 900®, and Technora®. Mechanical property tests demonstrated that the initial modulus of a yarn monotonically decreases with increasing twist. A model based on composite theory was developed to elucidate the decrease in the modulus as a function of both the degree of twist and the elastic constants of the fibers. The modulus values predicted by the model have good agreement with those measured by experiment. The radial shear modulus of the fiber, which is difficult to measure, can be derived from the regression parameter of experimental data by the use of the model. Such information should be useful for some specialized applications of fibers, for example, fiber‐reinforced composites. The experimental results show that the strength of these yarns can be improved by a slight twist. A high degree of twist damages the fibers and reduces the tensile strength of the yarn. The elongation to break of the yarns monotonically increases with the degree of twist. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1938–1949, 2000

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here