Premium
Quantum chemical study on enantioselective reduction of keto oxime ether with borane catalyzed by oxazaborolidine. Part 1. Structures of catalyst–borane–keto oxime ether adducts
Author(s) -
Li Ming,
Zheng Wenxu,
Yang Feng,
Tian Anmin
Publication year - 2001
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/1097-461x(2001)81:4<291::aid-qua6>3.0.co;2-7
Subject(s) - borane , oxime , chemistry , enantioselective synthesis , adduct , catalysis , ether , organic chemistry , medicinal chemistry
In the present work, quantum chemical computations of the enantioselective reduction of keto oxime ether with borane catalyzed by chiral oxazaborolidine are performed by means of the Hartree–Fock and the density functional methods. The structures of oxazaborolidine, oxazaborolidine–borane adduct, and oxazaborolidine–borane–keto oxime ether adducts are optimized completely at the HF/6‐31g* and B3LYP/6‐31g* levels and their properties studied in detail. The oxazaborolidine catalyst is a twisted chair structure and reacts with borane at the nitrogen site of the catalyst to form the catalyst–borane adduct whose formation reaction is exothermic. The catalyst–borane adduct reacts easily with keto oxime ether to form catalyst–borane–keto oxime ether adducts that have eight stable structures. The coordination of the carbonyl oxygen in keto oxime ether at the boron site of the catalyst is of more advantage to the enantioselective reduction of keto oxime ether than the coordination of the oxime nitrogen in the keto oxime ether at the boron site is. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 81: 291–304, 2001