z-logo
Premium
Four‐center integrals for Gaussian and exponential functions
Author(s) -
Fernández Rico J.,
Fernández J. J.,
Ema I.,
López R.,
Ramírez G.
Publication year - 2000
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/1097-461x(2001)81:1<16::aid-qua5>3.0.co;2-a
Subject(s) - bessel function , exponential function , gaussian , center (category theory) , operator (biology) , fourier transform , gauss , exponential type , mathematics , physics , mathematical physics , quantum mechanics , mathematical analysis , chemistry , biochemistry , repressor , transcription factor , gene , crystallography
The shift operator technique is used for deriving, in a unified manner, the master formulas for the four‐center repulsion integrals involving Gaussian (GTO), Slater (STO), and Bessel (BTO) basis functions. Moreover, for the two classes of exponential‐type functions (ETO), i.e., STO and BTO, we give the expressions corresponding to both the Gauss and Fourier transforms. From the comparison of the master formulas of GTO and ETO, we conclude that ETO can perform more efficiently than GTO, and we remark the points where the effort must be focused to carry out this possibility. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 81: 16–28, 2001

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here