Premium
The two‐dimensional streamline upwind scheme for the convection–reaction equation
Author(s) -
Sheu Tony W. H.,
Shiah H. Y.
Publication year - 2001
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/1097-0363(20010315)35:5<575::aid-fld103>3.0.co;2-w
Subject(s) - upwind scheme , discretization , mathematics , finite element method , petrov–galerkin method , scalar (mathematics) , convection–diffusion equation , flow (mathematics) , mixed finite element method , galerkin method , mathematical analysis , geometry , physics , thermodynamics
This paper is concerned with the development of the finite element method in simulating scalar transport, governed by the convection–reaction (CR) equation. A feature of the proposed finite element model is its ability to provide nodally exact solutions in the one‐dimensional case. Details of the derivation of the upwind scheme on quadratic elements are given. Extension of the one‐dimensional nodally exact scheme to the two‐dimensional model equation involves the use of a streamline upwind operator. As the modified equations show in the four types of element, physically relevant discretization error terms are added to the flow direction and help stabilize the discrete system. The proposed method is referred to as the streamline upwind Petrov–Galerkin finite element model. This model has been validated against test problems that are amenable to analytical solutions. In addition to a fundamental study of the scheme, numerical results that demonstrate the validity of the method are presented. Copyright © 2001 John Wiley & Sons, Ltd.