z-logo
Premium
High order schemes for the scalar transport equation
Author(s) -
Hernández J. A.
Publication year - 2001
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/1097-0363(20010130)35:2<199::aid-fld90>3.0.co;2-4
Subject(s) - stencil , mathematics , interpolation (computer graphics) , discretization , truncation error , piecewise , linear interpolation , mathematical analysis , initial value problem , order of accuracy , courant–friedrichs–lewy condition , finite volume method , algorithm , numerical stability , numerical analysis , polynomial , computer science , animation , computer graphics (images) , computational science , physics , mechanics
A finite volume hybrid scheme for the spatial discretization that combines a fixed stencil and a stencil determined by the classical essentially non‐oscillatory (ENO) scheme is presented. Evolution equations are obtained for the mean values of each cell by means of piecewise interpolation. Time discretization is accomplished by a classical fourth‐order Runge–Kutta. Interpolation polynomials are determined using information of adjacent cells. While smooth regions are interpolated by means of a fixed molecule, discontinuous or sharp regions are interpolated by the classical ENO algorithm. The algorithm estimates the interpolation error at each time step by means of two interpolants of order q and q+1. The main computational load of the resultant scheme is in the interpolation, which is performed by the divided differences table. This table involves O(qN) operations, where q is the interpolation order and N is the number of cells. Finally, linear test cases of continuous and discontinuous initial conditions are integrated to see the goodness of the hybrid scheme. It is well known that, for some particular initial conditions, the classical ENO scheme does not perform properly, not attaining the truncation error of the scheme. It is shown that, for the smooth initial condition, sin 4 (x), the classical ENO scheme does not preserve the character of stability of the initial value problem, giving rise to unstable eigenvalues. The proposed hybrid scheme solves this problem, choosing a fixed stencil over the whole computational domain. The resultant schemes are equivalent to the classical finite difference schemes, which preserve the character of stability. It is also known that the same degeneracy of the error can be encountered for discontinuous solutions. It is shown for the initial discontinuous solution, e −x , that the classical ENO algorithm does not perform properly due to the conflict between the selection of the stencil to smoother regions (downwind region) and the hyperbolic character of the problem, which obliges us to take information from downwind. The proposed hybrid scheme solves this problem by choosing a fixed stencil over the whole computational domain except at the discontinuity. Copyright © 2001 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here