z-logo
Premium
Improvements to compressible Euler methods for low‐Mach number flows
Author(s) -
Sabanca Murat,
Brenner Gunther,
Alemdaroğlu Nafiz
Publication year - 2000
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/1097-0363(20000930)34:2<167::aid-fld53>3.0.co;2-r
Subject(s) - mach number , euler equations , compressible flow , riemann solver , mathematics , compressibility , euler's formula , roe solver , computational fluid dynamics , supersonic speed , riemann problem , mathematical analysis , riemann hypothesis , finite volume method , mechanics , physics
In the present study improvements to numerical algorithms for the solution of the compressible Euler equations at low Mach numbers are investigated. To solve flow problems for a wide range of Mach numbers, from the incompressible limit to supersonic speeds, preconditioning techniques are frequently employed. On the other hand, one can achieve the same aim by using a suitably modified acoustic damping method. The solution algorithm presently under consideration is based on Roe's approximate Riemann solver [Roe PL. Approximate Riemann solvers, parameter vectors and difference schemes. Journal of Computational Physics 1981; 43 : 357–372] for non‐structured meshes. The numerical flux functions are modified by using Turkel's preconditioning technique proposed by Viozat [Implicit upwind schemes for low Mach number compressible flows. INRIA, Rapport de Recherche No. 3084, January 1997] for compressible Euler equations and by using a modified acoustic damping of the stabilization term proposed in the present study. These methods allow the compressible Euler equations at low‐Mach number flows to be solved, and they are consistent in time. The efficiency and accuracy of the proposed modifications have been assessed by comparison with experimental data and other numerical results in the literature. Copyright © 2000 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here