Premium
Finite difference scheme for the solution of fluid flow problems on non‐staggered grids
Author(s) -
Barton I. E.,
Kirby R.
Publication year - 2000
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/1097-0363(20000815)33:7<939::aid-fld38>3.0.co;2-#
Subject(s) - finite difference scheme , scheme (mathematics) , computational fluid dynamics , flow (mathematics) , finite difference , finite difference method , mathematics , mechanics , fluid dynamics , mathematical optimization , computer science , geometry , mathematical analysis , physics
A new finite difference methodology is developed for the solution of computational fluid dynamics problems that do not require the use of staggered grid systems. Previous successful and robust non‐staggered methods, which used primitive variables and mass conservation in order to solve the pressure field, either interpolate cell‐face velocities or interpolate the pressure gradients in a special way, usually with an upwind‐bias to avoid the problem of odd–even coupling between the velocity and pressure fields. The new methodology presented does not detail a ‘special interpolation procedure for a primitive variable’, however, it manages to avoid the problem of odd–even coupling. The odd–even coupling is avoided by applying fourth‐order dissipation to the pressure field. It is shown that this approach can be regarded as a modified Rhie and Chow scheme. The method is implemented using a SIMPLE‐type algorithm and is applied to two test problems: laminar flow over a backward‐facing step and laminar flow in a square cavity with a driven lid. Good agreement is obtained between the numerical solutions and the corresponding benchmark solutions. The pressure dissipation term was found to successfully suppress wiggles in the pressure field. Copyright © 2000 John Wiley & Sons, Ltd.