z-logo
Premium
A nodal‐based implementation of a stabilized finite element method for incompressible flow problems
Author(s) -
Codina Ramon
Publication year - 2000
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/1097-0363(20000715)33:5<737::aid-fld30>3.0.co;2-w
Subject(s) - finite element method , mathematics , galerkin method , discontinuous galerkin method , compressibility , mixed finite element method , instability , matrix (chemical analysis) , flow (mathematics) , extended finite element method , mathematical analysis , geometry , mechanics , physics , engineering , structural engineering , materials science , composite material
The objective of this paper is twofold. First, a stabilized finite element method (FEM) for the incompressible Navier–Stokes is presented and several numerical experiments are conducted to check its performance. This method is capable of dealing with all the instabilities that the standard Galerkin method presents, namely the pressure instability, the instability arising in convection‐dominated situations and the less popular instabilities found when the Navier–Stokes equations have a dominant Coriolis force or when there is a dominant absorption term arising from the small permeability of the medium where the flow takes place. The second objective is to describe a nodal‐based implementation of the finite element formulation introduced. This implementation is based on an a priori calculation of the integrals appearing in the formulation and then the construction of the matrix and right‐hand side vector of the final algebraic system to be solved. After appropriate approximations, this matrix and this vector can be constructed directly for each nodal point, without the need to loop over the elements, thus making the calculations much faster. In order to be able to do this, all the variables have to be defined at the nodes of the finite element mesh, not on the elements. This is also so for the stabilization parameters of the formulation. However, doing this gives rise to questions regarding the consistency and the conservation properties of the final scheme, which are addressed in this paper. Copyright © 2000 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here