z-logo
Premium
A four‐node, shear‐deformable shell element developed via explicit Kirchhoff constraints
Author(s) -
Liu Jane,
Riggs H. R.,
Tessler Alexander
Publication year - 2000
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/1097-0207(20001120)49:8<1065::aid-nme992>3.0.co;2-5
Subject(s) - quadrilateral , diagonal , degrees of freedom (physics and chemistry) , node (physics) , displacement field , finite element method , mathematics , plate theory , bending of plates , geometry , mathematical analysis , structural engineering , bending , engineering , physics , quantum mechanics
An efficient, four‐node quadrilateral shell element is formulated using a linear, first‐order shear deformation theory. The bending part of the formulation is constructed from a cross‐diagonal assembly of four three‐node anisoparametric triangular plate elements, referred to as MIN3. Closed‐form constraint equations, which arise from the Kirchhoff constraints in the thin‐plate limit, are derived and used to eliminate the degrees‐of‐freedom associated with the ‘internal’ node of the cross‐diagonal assembly. The membrane displacement field employs an Allman‐type, drilling degrees‐of‐freedom formulation. The result is a displacement‐based, fully integrated, four‐node quadrilateral element, MIN4T, possessing six degrees‐of‐freedom at each node. Results for a set of validation plate problems demonstrate that the four‐node MIN4T has similar robustness and accuracy characteristics as the original cross‐diagonal assembly of MIN3 elements involving five nodes. The element performs well in both moderately thick and thin regimes, and it is free of shear locking. Shell validation results demonstrate superior performance of MIN4T over MIN3, possibly as a result of its higher‐order interpolation of the membrane displacements. It is also noted that the bending formulation of MIN4T is kinematically compatible with the existing anisoparametric elements of the same order of approximation, which include a two‐node Timoshenko beam element and a three‐node plate element, MIN3. Copyright © 2000 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here