z-logo
Premium
Dual methods for discrete structural optimization problems
Author(s) -
Beckers Muriel
Publication year - 2000
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/1097-0207(20000830)48:12<1761::aid-nme963>3.0.co;2-r
Subject(s) - duality gap , mathematical optimization , duality (order theory) , topology optimization , mathematics , subgradient method , topology (electrical circuits) , truss , optimization problem , finite element method , discrete mathematics , physics , structural engineering , combinatorics , engineering , thermodynamics
The purpose of this paper is to present a mathematical programming method developed to solve structural optimization problems involving discrete variables. We work in the following context: the structural responses are computed by the finite elements method and convex and separable approximation schemes are used to generate a sequence of explicit approximate subproblems.Each of them is solved in the dual space with a subgradient‐based algorithm (or with a variant of it) specially developed to maximize the not everywhere differentiable dual function. To show that the application field is large, the presented applications are issued from different domains of structural design, such as sizing of thin‐walled structures, geometrical configuration of trusses, topology optimization of membrane or 3‐D structures and welding points numbering in car bodies. The main drawback of using the dual approach is that the obtained solution is generally not the global optimum. This is linked to the presence of a duality gap, due to the non‐convexity of the primal discrete subproblems. Fortunately, this gap can be quantified: a maximum bound on its value can be computed. Moreover, it turns out that the duality gap is decreasing for higher number of variables; the maximum bound on the duality gap is generally negligible in the treated applications. The developed algorithms are very efficient for 2‐D and 3‐D topology optimization, where applications involving thousands of binary design variables are solved in a very short time. Copyright © 2000 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here