z-logo
Premium
Structure and function of the bat superior olivary complex
Author(s) -
Grothe Benedikt,
Park Thomas J.
Publication year - 2000
Publication title -
microscopy research and technique
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.536
H-Index - 118
eISSN - 1097-0029
pISSN - 1059-910X
DOI - 10.1002/1097-0029(20001115)51:4<382::aid-jemt7>3.0.co;2-7
Subject(s) - human echolocation , superior olivary complex , trapezoid body , context (archaeology) , auditory system , brainstem , cochlea , neuroscience , biology , anatomy , cochlear nucleus , paleontology
The superior olivary complex (SOC) is a mammalian auditory brainstem structure that contains several nuclei. Some of them are part of the ascending system projecting to higher auditory centers, others belong to the descending system projecting to the cochlear nuclei or the cochlea itself. The main nuclei of the ascending system, the lateral and medial superior olive (LSO, MSO), as well as the lateral and medial nuclei of the trapezoid body (LNTB, MNTB), have been traditionally associated with sound localization. Here we review the results of recent studies on the main SOC nuclei in echolocating bats. These studies suggest that some SOC structures and functions are highly conserved across mammals (e.g., the LSO, which is associated with interaural intensity difference processing), while others are phylogenetically highly variable in both form and function (e.g., the MSO, traditionally associated with interaural time difference processing). For the MSO, these variations indicate that we should broaden our view regarding what functions the MSO might participate in, since its function in echolocation seems to lie in the context of pattern recognition rather than sound localization. Furthermore, across bat species, variations in the form and physiology of the MSO can be linked to specific behavioral adaptations associated with different echolocation strategies. Finally, the comparative approach, including auditory specialists such as bats, helps us to reach a more comprehensive view of the functional anatomy of auditory structures that are still poorly understood, like the nucleus of the central acoustic tract (NCAT). Microsc. Res. Tech. 51:382–402, 2000. © 2000 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here