Premium
Pricing American options with stochastic volatility: Evidence from S&P 500 futures options
Author(s) -
Guan Lim Kian,
Xiaoqiang Guo
Publication year - 2000
Publication title -
journal of futures markets
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.88
H-Index - 55
eISSN - 1096-9934
pISSN - 0270-7314
DOI - 10.1002/1096-9934(200008)20:7<625::aid-fut2>3.0.co;2-m
Subject(s) - stochastic volatility , implied volatility , volatility smile , futures contract , volatility (finance) , econometrics , sabr volatility model , economics , forward volatility , volatility risk premium , volatility swap , moneyness , volatility risk , valuation of options , financial economics
This article is the first attempt to test empirically a numerical solution to price American options under stochastic volatility. The model allows for a mean‐reverting stochastic‐volatility process with non‐zero risk premium for the volatility risk and correlation with the underlying process. A general solution of risk‐neutral probabilities and price movements is derived, which avoids the common negative‐probability problem in numerical‐option pricing with stochastic volatility. The empirical test shows clear evidence supporting the occurrence of stochastic volatility. The stochastic‐volatility model outperforms the constant‐volatility model by producing smaller bias and better goodness of fit in both the in‐sample and out‐of‐sample test. It not only eliminates systematic moneyness bias produced by the constant‐volatility model, but also has better prediction power. In addition, both models perform well in the dynamic intraday hedging test. However, the constant‐volatility model seems to have a slightly better hedging effectiveness. The profitability test shows that the stochastic volatility is able to capture statistically significant profits while the constant volatility model produces losses. © 2000 John Wiley & Sons, Inc. Jrl Fut Mark 20:625–659, 2000