z-logo
Premium
The quantitative effect of chemical phosphate mobilization by carboxylate anions on P uptake by a single root. II. The importance of soil and plant parameters for uptake of mobilized P
Author(s) -
Gerke Jörg,
Römer Wilhelm,
Beißner Lutz
Publication year - 2000
Publication title -
journal of plant nutrition and soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.644
H-Index - 87
eISSN - 1522-2624
pISSN - 1436-8730
DOI - 10.1002/(sici)1522-2624(200004)163:2<213::aid-jpln213>3.0.co;2-0
Subject(s) - rhizosphere , chemistry , carboxylate , oxalate , excretion , phosphate , adsorption , inorganic chemistry , biochemistry , biology , organic chemistry , genetics , bacteria
Model calculations were made in order to quantify the effect of carboxylate excretion on phosphate (P) uptake by a single root. The uptake of chemically mobilized P increased exponentially with increasing concentration of adsorbed citrate or oxalate in soil because of the exponential relationship between adsorbed carboxylate and the solubilizing effect of carboxylate on P. The effect of local citrate excretion compared with uniform citrate excretion along the whole root was also calculated. Local exudation increased the uptake of chemically mobilized P because the higher concentration of citrate increases the solubilization of P. Additionally the effect of citrate excretion by root clusters e.g. proteoid roots was evaluated. Uptake of chemically mobilized P by root clusters was much higher than that of single roots, especially if the ratio of P buffering to citrate buffering was high. This is often the case in P fixing soils where by definition P buffering is high and citrate buffering is low because of the short time of reaction between root excreted citrate and rhizosphere soil. The reason for the superiority of cluster roots lies in the fact that most of the mobilized P is transported away from a single root to be absorbed by neighbouring roots in the clusters. This phenomenon demonstrates the strong ecological significance of cluster roots in relation to nutrient mobilization. The calculations on the effect of oxalate excretion by sugar beet roots on the uptake of mobilized P show that under P fixing conditions the influx of mobilized P will exceed that of P transported by diffusion to the root surface by a factor of 1.5—6.0.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here