Premium
Characterization of clay and fine silt fractions of forest soils by standardized K/Ca sorption isotherms
Author(s) -
Dultz Stefan,
Pesci Nestor
Publication year - 2000
Publication title -
journal of plant nutrition and soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.644
H-Index - 87
eISSN - 1522-2624
pISSN - 1436-8730
DOI - 10.1002/(sici)1522-2624(200002)163:1<83::aid-jpln83>3.0.co;2-q
Subject(s) - chemistry , sorption , illite , silt , selectivity , particle size , soil water , clay minerals , mineralogy , cation exchange capacity , chlorite , environmental chemistry , nuclear chemistry , adsorption , geology , soil science , organic chemistry , quartz , paleontology , catalysis
For better comparison of selectivity characteristics of clay and fine silt fractions sorption isotherms standardized on the cation exchange capacity (CEC) are useful. Due to the effect of the CEC on the sorption isotherms, it is necessary to characterize the exchanging substance with regard to different ion selectivities with standardized potassium/calcium‐(K/Ca) sorption isotherms. This procedure helps to complete the knowledge about the mineralogical composition, which is obtained by X‐ray powder diffractometry. A Haplic Luvisol from boulder marl shows distinct differences in its K selectivity both between different particle size fractions and different horizons. This is partly due to the presence of smectites and vermiculites which are differently distributed within the particle size fractions. The increase of K selectivity with increasing particle diameter in the calcareous C horizon can be attributed to the marginal expansion of mica/illite by Ca 2+ ions. The K selectivity of individual particle size fractions in different horizons of a Gleyic Cambisol from glacial sand shows major similarities. If pedogenic chlorite is formed, no changes in selectivity characteristics can be observed.