z-logo
Premium
The Spectral Shift Function for Certain Block Operator Matrices
Author(s) -
Adamjan Vadim,
Langer Heinz
Publication year - 2000
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/(sici)1522-2616(200003)211:1<5::aid-mana5>3.0.co;2-u
Subject(s) - mathematics , operator matrix , diagonal , operator (biology) , spectrum (functional analysis) , sign (mathematics) , trace (psycholinguistics) , function (biology) , block (permutation group theory) , trace class , matrix (chemical analysis) , class (philosophy) , constant (computer programming) , pure mathematics , shift operator , combinatorics , mathematical analysis , compact operator , hilbert space , geometry , physics , extension (predicate logic) , quantum mechanics , computer science , philosophy , materials science , repressor , artificial intelligence , linguistics , chemistry , composite material , biology , biochemistry , evolutionary biology , transcription factor , programming language , gene
Let L 0 be a 2 × 2 diagonal self‐adjoint block operator matrix with entries A and D . If operators B and B * are added to the off diagonal zeros, certain parts of the spectrum of L 0 move to the right and other parts move to the left. In this paper it is shown that, correspondingly, if B is a trace class operator M. G. Krein's spectral shift function is of constant sign on certain intervals.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here