Premium
Carbon fibre reinforced carbon produced by polymer impregnation and pyrolysis
Author(s) -
Lüdenbach G.,
Peters P. W. M.,
Bunk W.
Publication year - 1999
Publication title -
materialwissenschaft und werkstofftechnik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.285
H-Index - 38
eISSN - 1521-4052
pISSN - 0933-5137
DOI - 10.1002/(sici)1521-4052(199904)30:4<185::aid-mawe185>3.0.co;2-4
Subject(s) - carbonization , pyrolysis , polymer , carbon fibers , mechanical strength , chemistry , polymer chemistry , thermal stability , composite material , materials science , chemical engineering , organic chemistry , composite number , scanning electron microscope , engineering
Carbon fibre reinforced carbon (C/C) is an attractive material for intermediate and high temperature applications due to its specific properties like low density, high strength and chemical stability. Unfortunately the material oxidizes, so that in an oxidative environment a protective coating has to be applied. Polymer impregnation and pyrolysis is a cost effective production technique to produce C/C materials. In the present work, an abstract of a research program funded by the German Science Foundation (DFG), the mechanical properties of C/C as a function of processing temperature and test temperature have been described. In the program the behaviour of two‐dimensionally reinforced (2D) material and unidirectional reinforced (1D) materials has been investigated. All materials experience a strength reduction as a result of carbonization of the polymer matrix at temperatures up to 1000°C. An additional heat treatment above 1000°C causes a partial recovery of the strength. The 1D C/C material shows up to testing temperatures of 1800°C a 10 % loss of strength, whereas for the 2D C/C the strength increases by 10 % at 1500°C in comparison with the room temperature results.