Premium
Integrable Variants of Non‐Holonomic Rigid Body Problems
Author(s) -
Okuneva G.G.
Publication year - 1998
Publication title -
zamm ‐ journal of applied mathematics and mechanics / zeitschrift für angewandte mathematik und mechanik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 51
eISSN - 1521-4001
pISSN - 0044-2267
DOI - 10.1002/(sici)1521-4001(199812)78:12<833::aid-zamm833>3.0.co;2-g
Subject(s) - integrable system , holonomic , torus , mathematics , pure mathematics , holonomic constraints , rigid body , mathematical analysis , classical mechanics , physics , geometry , quantum mechanics
Integrable variants of a non‐holonomic Suslov problem with compact and non‐compact levels of the energy integral are investigated. The integral manifolds can be both compact and non‐compact two‐dimensional surfaces, in particular, a torus with four holes, a sphere with four holes, and a sphere with a number of handles and a number of holes.