Premium
A Phragmén‐Lindelöf Theorem for Porous Elastic Cylinders
Author(s) -
Scalia A.
Publication year - 1998
Publication title -
zamm ‐ journal of applied mathematics and mechanics / zeitschrift für angewandte mathematik und mechanik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.449
H-Index - 51
eISSN - 1521-4001
pISSN - 0044-2267
DOI - 10.1002/(sici)1521-4001(199808)78:8<571::aid-zamm571>3.0.co;2-b
Subject(s) - uniqueness , exponential function , work (physics) , cylinder , displacement (psychology) , mathematical analysis , function (biology) , anisotropy , homogeneous , mathematics , uniqueness theorem for poisson's equation , porous medium , porosity , physics , geometry , materials science , thermodynamics , combinatorics , composite material , optics , psychology , evolutionary biology , biology , psychotherapist
The paper is concerned with the equilibrium theory of elastic materials with voids. An analogue of the Phragmén‐Lindelö principle for a semi‐infinite right cylinder composed of a homogeneous and anisotropic material is presented. The paper studies the asymptotic behaviour of solutions measured by the cross‐sectional work function. The work‐function to within a rigid body displacement either decays faster than a certain decreasing exponential function or grows faster than a growing exponential function. A uniqueness result is also derived.