Premium
Three‐dimensional Low‐energy Topological Invariants
Author(s) -
Bakalarska Małgorzata,
Broda Bogusław
Publication year - 2000
Publication title -
fortschritte der physik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.469
H-Index - 71
eISSN - 1521-3978
pISSN - 0015-8208
DOI - 10.1002/(sici)1521-3978(20001)48:1/3<5::aid-prop5>3.0.co;2-n
Subject(s) - betti number , torsion (gastropod) , mathematics , abelian group , pure mathematics , partition function (quantum field theory) , topology (electrical circuits) , manifold (fluid mechanics) , partition (number theory) , physics , combinatorics , quantum mechanics , biology , mechanical engineering , zoology , engineering
A description of the one‐loop approximation formula for the partition function of a three‐dimensional abelian version of the Donaldson‐Witten theory is proposed. The one‐loop expression is shown to contain such topological invariants of a three‐dimensional manifold ℳ like the Reidemeister‐Ray‐Singer torsion τ R and Betti numbers.