z-logo
Premium
The Poisson Bracket Structure of the SL(2, R)/U(1) Gauged WZNW Model with Periodic Boundary Conditions
Author(s) -
Müller Uwe,
Weigt Gerhard
Publication year - 2000
Publication title -
fortschritte der physik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.469
H-Index - 71
eISSN - 1521-3978
pISSN - 0015-8208
DOI - 10.1002/(sici)1521-3978(20001)48:1/3<179::aid-prop179>3.0.co;2-c
Subject(s) - poisson bracket , bracket , mathematical physics , poisson algebra , integrable system , poisson manifold , conformal map , mathematics , conformal field theory , zero (linguistics) , boundary (topology) , boundary value problem , physics , pure mathematics , mathematical analysis , lie algebra , symplectic geometry , mechanical engineering , linguistics , philosophy , engineering
The gauged SL(2, R)/U(1) Wess‐Zumino‐Novikov‐Witten (WZNW) model is classically an integrable conformal field theory. A second‐order differential equation of the Gelfand‐Dikii type defines the Poisson bracket structure of the theory. For periodic boundary conditions zero modes imply non‐local Poisson brackets which, nevertheless, can be represented by canonical free fields.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here