Premium
CW and Time‐Resolved Optical Spectroscopy of GaN Epilayers and GaN–AlGaN Quantum Wells Grown on A‐Plane Sapphire
Author(s) -
Gallart M.,
Taliercio T.,
Alemu A.,
Lefebvre P.,
Gil B.,
Allègre J.,
Mathieu H.,
Nakamura S.
Publication year - 1999
Publication title -
physica status solidi (b)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.51
H-Index - 109
eISSN - 1521-3951
pISSN - 0370-1972
DOI - 10.1002/(sici)1521-3951(199911)216:1<365::aid-pssb365>3.0.co;2-g
Subject(s) - sapphire , wurtzite crystal structure , photoluminescence , anisotropy , materials science , spectroscopy , quantum well , condensed matter physics , optoelectronics , radiative transfer , non radiative recombination , gallium nitride , optics , molecular physics , semiconductor , physics , laser , semiconductor materials , nanotechnology , quantum mechanics , layer (electronics) , zinc , metallurgy
Optical anisotropy in the growth plane has been observed by reflectance and photoluminescence (PL) spectroscopy on nitride epilayers grown on A‐plane sapphire. This anisotropy results from the strongly anisotropic thermal strain which is such that the wurtzite symmetry goes from C 6v to C 2v . Time‐resolved PL reveals less marked anisotropy for PL decay times, due to the contributions of both radiative and non‐radiative recombination channels. Nevertheless, by using a multi‐level modelling of the time‐dependent PL accounting for the optical anisotropy, we are able to separate the two types of recombinations. Last, we present cw and time‐resolved PL results on GaN–AlGaN single quantum wells grown on A‐face sapphire.