z-logo
Premium
Quantum Interference Effects, Magnetoresistance and Localisation in Disordered Systems
Author(s) -
Paja A.,
Morgan G. J.
Publication year - 1998
Publication title -
physica status solidi (b)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.51
H-Index - 109
eISSN - 1521-3951
pISSN - 0370-1972
DOI - 10.1002/(sici)1521-3951(199804)206:2<701::aid-pssb701>3.0.co;2-6
Subject(s) - condensed matter physics , magnetoresistance , scattering , boltzmann equation , context (archaeology) , physics , weak localization , relaxation (psychology) , magnetic field , limit (mathematics) , boltzmann constant , amorphous solid , field (mathematics) , interference (communication) , conductivity , quantum mechanics , chemistry , mathematics , psychology , paleontology , social psychology , mathematical analysis , organic chemistry , pure mathematics , biology , channel (broadcasting) , electrical engineering , engineering
The magnetoresistivity of a disordered metallic system is derived using the “2 K F ‐scattering” theory in terms of a generalized Boltzmann equation with magnetic field B included. The behaviour is complex but in the limit of weak fields (which are experimentally quite strong) we find a negative contribution to the relaxation time proportional to B 2 which gives rise to a positive magnetoconductivity proportional to B 2 . The conductivity in zero field increases with temperature. We discuss these results in the context of measurements for amorphous Ca z Al 1— z and existing theories of magnetoconductivity. The theory explains the nature of the observed results. It can also be generalised to strong localisation and applied in strong scattering situations.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here