Premium
Mapping of the Local Confinement Potential in Semiconductor Nanostructures by Near‐Field Optical Spectroscopy
Author(s) -
Lienau Ch.,
Richter A.,
Behme G.,
Süptitz M.,
Elsaesser T.,
Ramsteiner M.,
Nötzel R.,
Ploog K. H.
Publication year - 1998
Publication title -
physica status solidi (b)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.51
H-Index - 109
eISSN - 1521-3951
pISSN - 0370-1972
DOI - 10.1002/(sici)1521-3951(199803)206:1<153::aid-pssb153>3.0.co;2-4
Subject(s) - near field scanning optical microscope , photoluminescence , spectroscopy , quantum dot , quantum wire , photoluminescence excitation , semiconductor , materials science , quantum well , optoelectronics , condensed matter physics , molecular physics , optical microscope , physics , quantum , optics , scanning electron microscope , quantum mechanics , laser
The optical properties of a new quantum‐well‐embedded GaAs quantum wire structure grown on patterned (311)A GaAs surfaces are directly mapped by low temperature near‐field scanning optical microscopy (NSOM). Photoluminescence excitation spectroscopy with subwavelength spatial resolution allows a quantitative analysis of the local confinement potential of such structures which exhibit shallow barriers close to the quantum wire. This local potential influences the carrier transport dynamics within the embedding quantum well and — in particular — carrier trapping from two‐dimensional quantum well into one‐dimensional wire states as is directly revealed in steady‐state and time‐resolved photoluminescence experiments at variable temperatures.