z-logo
Premium
Path integral quantization of the Poisson‐Sigma model
Author(s) -
Hirshfeld Allen C.,
Schwarzweller Thomas
Publication year - 2000
Publication title -
annalen der physik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.009
H-Index - 68
eISSN - 1521-3889
pISSN - 0003-3804
DOI - 10.1002/(sici)1521-3889(200002)9:2<83::aid-andp83>3.0.co;2-s
Subject(s) - path integral formulation , quantization (signal processing) , poisson distribution , sigma model , mathematical physics , physics , sigma , gauge theory , partition function (quantum field theory) , mathematics , quantum mechanics , quantum , statistics , nonlinear system
We apply the antifield quantization method of Batalin and Vilkovisky to the calculation of the path integral for the Poisson‐Sigma model in a general gauge. For a linear Poisson structure the model reduces to a nonabelian gauge theory, and we obtain the formula for the partition function of two‐dimensional Yang‐Mills theory for closed oriented two‐dimensional manifolds.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here