Premium
New 5‐designs with automorphism group PSL(2, 23)
Author(s) -
Kitazume Masaaki,
Munemasa Akihiro
Publication year - 1999
Publication title -
journal of combinatorial designs
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.618
H-Index - 34
eISSN - 1520-6610
pISSN - 1063-8539
DOI - 10.1002/(sici)1520-6610(1999)7:2<147::aid-jcd6>3.0.co;2-w
Subject(s) - psl , mathematics , automorphism group , combinatorics , group (periodic table) , automorphism , set (abstract data type) , steiner system , discrete mathematics , computer science , chemistry , organic chemistry , programming language
Blocks of the unique Steiner system S (5, 8, 24) are called octads . The group PSL(2, 23) acts as an automorphism group of this Steiner system, permuting octads transitively. Inspired by the discovery of a 5‐(24, 10, 36) design by Gulliver and Harada, we enumerate all 4‐ and 5‐designs whose set of blocks are union of PSL(2, 23)‐orbits on 10‐subsets containing an octad. © 1999 John Wiley & Sons, Inc. J Combin Designs 7: 147–155, 1999