Premium
A bound for Wilson's theorem (III)
Author(s) -
Chang Yanxun
Publication year - 1996
Publication title -
journal of combinatorial designs
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.618
H-Index - 34
eISSN - 1520-6610
pISSN - 1063-8539
DOI - 10.1002/(sici)1520-6610(1996)4:2<83::aid-jcd1>3.0.co;2-v
Subject(s) - mathematics , combinatorics , statement (logic) , mod , discrete mathematics , law , political science
Abstract In this article we prove the following statement. For any positive integers k ≥ 3 and λ, let c ( k , λ) = exp{exp{ k k 2;rcub;}. If λ v ( v − 1) ≡ 0 (mod k ( k − 1)) and λ( v − 1) ≡ 0 (mod k − 1) and v > c ( k , λ), then a B ( v , k , λ) exists. © 1996 John Wiley & Sons, Inc.