z-logo
Premium
A bound for Wilson's theorem (III)
Author(s) -
Chang Yanxun
Publication year - 1996
Publication title -
journal of combinatorial designs
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.618
H-Index - 34
eISSN - 1520-6610
pISSN - 1063-8539
DOI - 10.1002/(sici)1520-6610(1996)4:2<83::aid-jcd1>3.0.co;2-v
Subject(s) - mathematics , combinatorics , statement (logic) , mod , discrete mathematics , law , political science
In this article we prove the following statement. For any positive integers k ≥ 3 and λ, let c ( k , λ) = exp{exp{ k   k   2;rcub;}. If λ v ( v − 1) ≡ 0 (mod k ( k − 1)) and λ( v − 1) ≡ 0 (mod k − 1) and v > c ( k , λ), then a B ( v , k , λ) exists. © 1996 John Wiley & Sons, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom