Premium
The scattering of plane elastic waves by a one‐dimensional periodic surface
Author(s) -
Arens T.
Publication year - 1999
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/(sici)1099-1476(19990110)22:1<55::aid-mma20>3.0.co;2-t
Subject(s) - mathematics , mathematical analysis , boundary value problem , superposition principle , scattering , uniqueness , diffraction , plane (geometry) , surface (topology) , isotropy , geometry , physics , optics
Abstract The two‐dimensional scattering problem for time‐harmonic plane waves in an isotropic elastic medium and an effectively infinite periodic surface is considered. A radiation condition for quasi‐periodic solutions similar to the condition utilized in the scattering of acoustic waves by one‐dimensional diffraction gratings is proposed. Under this condition, uniqueness of solution to the first and third boundary‐value problems is established. We then proceed by introducing a quasi‐periodic free field matrix of fundamental solutions for the Navier equation. The solution to the first boundary‐value problem is sought as a superposition of single‐ and double‐layer potentials defined utilizing this quasi‐periodic matrix. Existence of solution is established by showing the equivalence of the problem to a uniquely solvable second kind Fredholm integral equation. Copyright © 1999 John Wiley & Sons, Ltd.