z-logo
Premium
Magnetic properties of lake sediments from Lake Chalco, central Mexico, and their palaeoenvironmental implications
Author(s) -
Guerrero Beatriz Ortega,
Thompson Roy,
Fucugauchi Jaime Urrutia
Publication year - 2000
Publication title -
journal of quaternary science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.142
H-Index - 94
eISSN - 1099-1417
pISSN - 0267-8179
DOI - 10.1002/(sici)1099-1417(200002)15:2<127::aid-jqs474>3.0.co;2-z
Subject(s) - geology , tephra , holocene , pleistocene , magnetic mineralogy , geochemistry , sediment , glacial period , rock magnetism , glacial lake , volcano , geomorphology , paleontology , remanence , magnetic field , physics , magnetization , quantum mechanics
Lake Chalco (99.0°W, 19.5°N) in the Basin of Mexico, was formed during the Pleistocene after the emplacement of the Chichinautzin volcanic field that closed the former drainage system. The lake sediment record has been influenced by a number of factors, including glacial–interglacial cycles, local volcanism, erosion of soils and anthropogenic disturbances. The magnetic properties of the lake sediments and the associated tephra layers of the last 16500 yr have been studied. It is found that the magnetic properties of the Lake Chalco sediments are very distinctive. Magnetic concentration varies by a factor of 1000 and magnetic stability also varies over an extremely wide range. The predominant magnetic mineral is titanomagnetite in addition to an imperfect antiferromagnetic phase, possibly goethite. An unusually large range of coercivities is found in certain of the tephras. Down‐core variations in magnetic properties closely follow climatic/environmental changes previously established by other proxy methods. The late Pleistocene and late Holocene lake sediments display a higher concentration of magnetic minerals than the early–middle Holocene sediments. In the non‐volcanic sediments, fluctuations in the magnetic concentration reflect changes in both the intensity of erosion, as represented by ferrimagnetic and paramagnetic minerals, and by the maturing of soils, as represented by geothite. Copyright © 2000 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here