Premium
Trends in eutrophication research and control
Author(s) -
Rast Walter,
Thornton Jeffrey A.
Publication year - 1996
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/(sici)1099-1085(199602)10:2<295::aid-hyp360>3.0.co;2-f
Subject(s) - eutrophication , environmental science , biomass (ecology) , water quality , nutrient , biogeochemical cycle , aquatic ecosystem , ecology , ecosystem , environmental protection , biology
Eutrophication is the natural ageing process of lakes. It is characterized by a geologically slow shift from in‐lake biological production driven by allochthonous (external to the water body) loading of nutrients, to production driven by autochthonous (in‐lake) processes. This shift typically is accompanied by changes in species and biotic community composition, as an aquatic ecosystem is ultimately transformed into a terrestrial biome. However, this typically slow process can be greatly accelerated by human intervention in the natural biogeochemical cycling of nutrients within a watershed; the resulting cultural eutrophication can create conditions inimical to the continued use of the water body for human‐driven economic purposes. Excessive algal and rooted plant growth, degraded water quality, extensive deoxygenation of the bottom water layers and increased fish biomass accompanied by decreased harvest quality, are some features of this process. Following the Second World War, concern with cultural eutrophication achieved an intensity that spurred a significant research effort, culminating in the identification of phosphorus as the single most significant, and controllable, element involved in driving the eutrophication process. During the late 1960s and throughout the 1970s, much effort was devoted to reducing phosphorus in wastewater effluents, primarily in the developed countries of the temperate zone. These efforts generally resulted in the control of eutrophication in these countries, albeit with varying degrees of success. The present effort in the temperature zone, comprising mostly developed nations, has now shifted to the control of diffuse sources of a broader spectrum of contaminants that impact human water use. In the developing countries of the inter‐tropical zone, however, rapidly expanding populations, a growing industrial economy and extensive urbanization have only recently reached an intensity at which cultural eutrophication can no longer be ignored. Further, initial attempts at applying temperate zone control measures in this region have been largely unsuccessful. Modification of the temperate zone eutrophication paradigm will be needed, especially to address the differing climatic and hydrological conditions, if cultural eutrophication is to be contained in this region, where eutrophication‐related diseases continue to be a primary cause of human distress.