Premium
Adsorption of phenyltin compounds onto phosphatidylcholine / cholesterol bilayers
Author(s) -
Langner Marek,
Gabrielska Janina,
Przestalski Stanisław
Publication year - 2000
Publication title -
applied organometallic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.53
H-Index - 71
eISSN - 1099-0739
pISSN - 0268-2605
DOI - 10.1002/(sici)1099-0739(200001)14:1<25::aid-aoc943>3.0.co;2-n
Subject(s) - chemistry , bilayer , phosphatidylcholine , membrane , lipid bilayer , lipid bilayer phase behavior , membrane fluidity , biological membrane , phospholipid , biochemistry
Phenyltin compounds are known to be biologically active and, whan widely spread, are potentially hazardous. As their chemical structure suggests, they interact with the lipid fraction of the cell membrane. Their effect on the model phosphatidylcholine/cholesterol bilayer has been studied using fluorescence and 1 H NMR techniques. The change in the fluorescein‐PE fluorescence intensity indicates the amount of charge added by phenyltin compounds to the membrane surface. Although the presence of cholesterol alone does not alter membrane interface properties measured with fluorescein‐PE, 1 H NMR measurements show that lipid mobility is altered throughout the hydrophobic core of the membrane. Cholesterol in the phosphatidylcholine bilayer does not alter tetraphenyltin interaction with the membrane, though the effect of diphenyltin dichloride, penetrating deeply into the hydrophobic core of the membrane, is reduced when the amount of cholesterol in the membrane is increased, suggesting decreased compound adsorption. Triphenyltin chloride has a qualitatively different effect on the lipid bilayer, when observed using this fluorescence technique. The adsorption of triphenyltin onto the phosphatidylcholine/cholesterol membrane induces a lateral phase separation of membrane components. Since triphenyltin chloride is known to be adsorbed onto the interface of the lipid bilayer, this separation mechanism must originate in this region and does not seem to be electrostatic in origin. 1 H NMR measurements have confirmed the observation that these two active phenyltin compounds interact with the phosphatidylcholine/cholesterol membrane differently, disrupting different regions of the bilayer to a different degree. Copyright © 2000 John Wiley & Sons, Ltd.