z-logo
open-access-imgOpen Access
Structure and morphology of nylon 46 lamellar crystals: Electron microscopy and energy calculations
Author(s) -
Bermúdez Marta,
León Salvador,
Alemán Carlos,
MuñozGuerra Sebastián
Publication year - 2000
Publication title -
journal of polymer science part b: polymer physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.65
H-Index - 145
eISSN - 1099-0488
pISSN - 0887-6266
DOI - 10.1002/(sici)1099-0488(20000101)38:1<41::aid-polb5>3.0.co;2-o
Subject(s) - lamellar structure , shearing (physics) , crystallography , electron diffraction , crystallization , materials science , crystal structure , crystal (programming language) , electron microscope , diffraction , lattice energy , chemistry , composite material , optics , thermodynamics , physics , programming language , computer science
A detailed electron microscopy study of the structure and morphology of lamellar crystals of nylon 46 obtained by crystallization from solution has been carried out. Electron diffraction of crystals supported by X‐ray diffraction of their sediments revealed that they consist of a twinned crystal lattice made of hydrogen‐bonded sheets separated 0.376 nm and shifted along the a ‐axis (H‐bond direction) with a shearing angle of 65°. The interchain distance within the sheets is 0.482 nm. These parameters are similar to those previously described for nylon 46 lamellar crystals grown at lower temperatures. A combined energy calculation and modeling simulation analysis of all possible arrangements for the crystal‐packing of nylon 46 chains, in fully extended conformation, was performed. Molecular mechanics calculations showed very small energy differences between α (alternating intersheet shearing) and β (progressive intersheet shearing) structures with energy minima for successive sheets sheared at approximately 1/6 c and 1/3 c . A mixed lattice composed of a statistical array of α and β structures with such sheet displacements was found to be fully compatible with experimental data and most appropriate to describe nylon 46 lamellar crystals. Annealing of the crystals at temperatures closely below the Brill transition induced enrichment in β structure and increased chain‐folding order. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 41–52, 2000

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here