z-logo
Premium
Improvement of male pronuclear formation during cross‐fertilization between Chinese hamster spermatozoa and Syrian hamster oocytes by nocodazole, and chromosome analysis of hybrid zygotes
Author(s) -
Tateno Hiroyuki,
Kamiguchi Yujiroh
Publication year - 1999
Publication title -
molecular reproduction and development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.745
H-Index - 105
eISSN - 1098-2795
pISSN - 1040-452X
DOI - 10.1002/(sici)1098-2795(199901)52:1<117::aid-mrd14>3.0.co;2-s
Subject(s) - pronucleus , biology , nocodazole , andrology , human fertilization , zygote , sperm , hamster , spermatozoon , oocyte , genetics , embryo , metaphase , chinese hamster , chromosome , embryogenesis , microbiology and biotechnology , gene , dna , medicine , cytoskeleton , cell
Abstract During cross‐fertilization between Chinese hamster spermatozoa and Syrian hamster oocytes, incorporated sperm heads frequently fail to develop into male pronuclei, whereas the group of oocyte chromosomes develop into female pronuclei. The present study applies this cross‐fertilization system to the cytogenetic investigation of mammalian hybrid embryos. Immediately after insemination, oocytes were exposed to 0.1 μg/ml nocodazole for 1 hr (1 hr group) or 2 hr (2 hr group), then further cultured. Although the rates of sperm penetration in the 1 hr (48.0%) and 2 hr (75.8%) groups were significantly lower than that in the control group (89.8%), the ratios of male pronuclear formation were higher in both exposed groups (79.4% and 74.2%, respectively) than in the control group (10.6%). These results were apparently due to sperm head decondensation induced during the meiotic arrest of oocytes at metaphase II by nocodazole. Chromosomes of hybrid zygotes obtained after nocodazole exposure were analyzed at the first cleavage metaphase. The incidence of structural chromosome aberrations in the Chinese hamster genome of hybrid zygotes was high in the control (42.1%) and 1 hr (48.8%) groups. This incidence was reduced to 14.4% in the 2 hr group. Because the lag of sperm head decondensation behind the second meiotic division of oocytes was greater in the control and 1 hr groups than in the 2 hr group, untimely sperm head decondensation may be implicated in occurrence of structural chromosome aberrations in the male genomes of hybrid zygotes. Mol. Reprod. Dev. 52:117–124, 1999. © 1999 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here