Premium
Marginalization of Socioscientific Material in Science–Technology–Society Science Curricula: Some Implications for Gender Inclusivity and Curriculum Reform
Author(s) -
Hughes Gwyneth
Publication year - 2000
Publication title -
journal of research in science teaching
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.067
H-Index - 131
eISSN - 1098-2736
pISSN - 0022-4308
DOI - 10.1002/(sici)1098-2736(200005)37:5<426::aid-tea3>3.0.co;2-u
Subject(s) - curriculum , syllabus , science education , context (archaeology) , sociology , nature of science , science, technology, society and environment education , pedagogy , social science education , science communication , social science , paleontology , biology
Science education reformers have argued that presenting science in the abstract is neither motivating nor inclusive of the majority of students. Science–technology–society (STS) curricula that give science an accessible social context have developed in response, but controversy surrounds the extent to which students should be introduced to socioscientific debate. Using material from a case study of Salters' Advanced Chemistry in the United Kingdom, this article demonstrates how socioscientific material is marginalized through the structures and language of syllabus texts and through classroom practices. This means students are unlikely to engage with socioscientific aspects in their course. Socioscientific content is gendered through association with social concerns and epistemological uncertainty, and because gender is asymmetric, socioscience is devalued with respect to the masculinity of abstract science. Teachers fear that extensive coverage of socioscience devalues the curriculum, alienates traditional science students and jeopardizes their own status as gatekeepers of scientific knowledge. Thus, although STS curricula such as Salters' offer potential for making science more accessible, the article concludes that greater awareness of, and challenges to, gender binaries could result in more effective STS curriculum reform. © 2000 John Wiley & Sons, Inc. J Res Sci Teach: 37: 426–440, 2000.