Premium
Discretization of the stationary convection‐diffusion‐reaction equation
Author(s) -
van't Hof B.,
ten Thije Boonkkamp J. H. M.,
Mattheij R. M. M.
Publication year - 1998
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/(sici)1098-2426(199809)14:5<607::aid-num5>3.0.co;2-m
Subject(s) - mathematics , discretization , convection–diffusion equation , péclet number , partial differential equation , exponential function , computation , numerical solution of the convection–diffusion equation , mathematical analysis , finite volume method , diffusion , convection , finite element method , thermodynamics , mixed finite element method , physics , algorithm
A finite volume method for the convection‐diffusion‐reaction equation is presented, which is a model equation in combustion theory. This method is combined with an exponential scheme for the computation of the fluxes. We prove that the numerical fluxes are second‐order accurate, uniformly in the local Peclet numbers. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 607–625, 1998