Predecessors in a random mapping
Author(s) -
Jerzy Jaworski
Publication year - 1998
Publication title -
random struct. algorithms
Language(s) - English
DOI - 10.1002/(sici)1098-2418(199810/12)13:3/4<501::aid-rsa17>3.0.co;2-0
Ž . 4 ABSTRACT: A random mapping T ; q of a finite set V, Vs 1, 2, . . . , n into itself assigns independently to each igV its unique image jgV with probability q if is j and with Ž . Ž . probability Ps 1yq r ny1 if i/ j. The number of predecessors of elements from a given subset of V is studied. Exact results and limit theorems for the distribution of this random variable, the quasi-binomial distribution, are given. The results are applied to an Ž . inverse epidemic process on a random digraph G representing T ; q . Q 1998 John Wiley & T Sons, Inc. Random Struct. Alg., 13, 501]519, 1998
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom