Premium
Multiple cover time
Author(s) -
Winkler Peter,
Zuckerman David
Publication year - 1996
Publication title -
random structures and algorithms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.314
H-Index - 69
eISSN - 1098-2418
pISSN - 1042-9832
DOI - 10.1002/(sici)1098-2418(199612)9:4<403::aid-rsa4>3.0.co;2-0
Subject(s) - conjecture , combinatorics , mathematics , hypercube , random walk , constant (computer programming) , logarithm , markov chain , multiplicative function , discrete mathematics , vertex (graph theory) , stationary distribution , graph , computer science , statistics , mathematical analysis , programming language
Motivated by applications in Markov estimation and distributed computing, we define the blanket time of an undirected graph G to be the expected time for a random walk to hit every vertex of G within a constant factor of the number of times predicted by the stationary distribution. Thus the blanket time is, essentially, the number of steps required of a random walk in order that the observed distribution reflect the stationary distribution. We provide substantial evidence for the following conjecture: that the blanket time of a graph never exceeds the cover time by more than a constant factor. In other words, at the cost of a multiplicative constant one can hit every vertex often instead of merely once. We prove the conjecture in the case where the cover time and maximum hitting time differ by a logarithmic factor. This case includes almost all graphs, as well as most “natural” graphs: the hypercube, k ‐dimensional lattices for k ≥ 2, balanced k ‐ary trees, and expanders. We further prove the conjecture for perhaps the most natural graphs not falling in the above case: paths and cycles. Finally, we prove the conjecture in the case of independent stochastic processes. © 1996 John Wiley & Sons, Inc. Random Struct. Alg. , 9 , 403–411 (1996)