Premium
Enhancement of NMDA‐induced current by the putative NR2B selective antagonist ifenprodil
Author(s) -
Zhang XueXiang,
Bunney Benjamin S.,
Shi WeiXing
Publication year - 2000
Publication title -
synapse
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.809
H-Index - 106
eISSN - 1098-2396
pISSN - 0887-4476
DOI - 10.1002/(sici)1098-2396(200007)37:1<56::aid-syn6>3.0.co;2-d
Subject(s) - ifenprodil , nmda receptor , antagonist , chemistry , pharmacology , competitive antagonist , biophysics , receptor , biology , biochemistry
Ifenprodil has been widely used as an antagonist selective for NMDA receptors containing the NR2B subunit. Evidence suggests, however, that ifenprodil also increases NMDA receptor affinity. Using rat brain slices, we found that ifenprodil enhanced NMDA‐induced current in both cortical and subcortical areas examined. To test whether the effect is due to an increase in NMDA receptor affinity, we compared the effect of ifenprodil on currents induced by different concentrations of NMDA. Consistent with the hypothesis, the enhancing effect (percent increase) was relatively constant at low NMDA concentrations. As NMDA concentration increased, however, the effect decreased. To test whether the effect is blocked when NMDA binding sites are saturated with NMDA, high concentrations of NMDA were applied. To partially block Ca 2+ influx and prevent cells from deteriorating, the experiments were performed in the presence of either MK801 or kynurenate, two noncompetitive antagonists. Under such conditions, ifenprodil not only failed to potentiate NMDA currents, but consistently suppressed the current. When the same concentration of NMDA was applied in the presence of the competitive antagonist CGP37849, ifenprodil regained its ability to potentiate NMDA currents. Furthermore, the higher the concentration of CGP37849 the more the NMDA current was potentiated by ifenprodil. These results, combined with previous studies, suggest that the enhancing effect is due to an increase in NMDA receptor affinity and is specific for responses induced by low NMDA concentrations. As NMDA concentration increases, the affinity‐enhancing effect decreases. Consequently, the channel‐suppressing effect becomes more prominent. Synapse 37:56–63, 2000. © 2000 Wiley‐Liss, Inc.